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ABSTRACT 

We determine the conjugacy class sizes, the character degrees, and the 

multiplicities of these sizes and degrees, for some relatively free p-groups. 

Introduction 
In this paper we obtain information about the conjugacy classes and irreducible 

characters of some finite groups of an odd prime exponent p. The groups that  

we consider are the relatively free groups in the varieties of groups of exponent 

p and a given nilpotency class. We determine the sizes of the conjugacy classes, 

and the number of classes of each size, for nilpotency classes up to 4. We also 

determine the degrees of the irreducible characters for classes 2 and 3, and for 

the groups of small rank of class 4. For class 2 we determine the multiplicity of 

each degree, and we also determine the number of characters of degree p of the 

relatively free groups of exponent p and arbitrary nilpotency class. Finally, we 

consider one variety of groups of class 2 and exponent p~. 

Since the number of p-groups is vast, results obtained for some of them can 

hardly be considered as typical. Still, for what it is worth, we note that  in all the 

cases that  we consider there occur very few class sizes, not more than four. In 
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contrast, the number of character degrees tends to infinity with the rank of the 

group. Moreover, with a single exception (see Lemma 9) the character degrees 

are consecutive powers of p. A curious situation occurs for one group of order 

314 . The class sizes are exactly the squares of the character degrees, and the 

multiplicities of the classes and of the characters are the same (see Lemma II). 

Our notation is mostly standard. We use 7~(G), Z(G), G I, and O(G) for 

the lower central series, center, commutator (derived) subgroup, and Frattini 

subgroup of G, cs(G) and cd(G) denote the sets of conjugacy class sizes and of 

irreducible character degrees of G, respectively, and k(G) is the class number, 
i.e. the number of conjugacy classes. We denote by d(G) the minimal number 

of generators of G, which for a/9-group is given by IG : ~(G)I -- pd(G). If F is 

a p-group which is relatively free in some variety, we refer to d(F) as the rank 
of F. Finally, Ix] is the integral part of the number x, and p(n) is the mSbius 

function. 

We recall the structure of the relevant groups. Let p be an odd prime, let 

r >_ 2, let Fr,c be the free group of rank r in the variety of groups of exponent 

p and class c, and let {Xl , . . .  ,Xr} be free generators of Fr,c. We sometimes 

just write F,  suppressing the subscripts r, c, when they are understood from the 
{r+l~ 

context. First, Fr,2 has order p~ 2 j, F~,~ can be considered as a vector space 

over GF(p) with the commutators [xi, xj], i < j ,  as a basis, and Z(F) = F'. 
For higher classes we have to separate the prime p = 3 from the bigger ones. 

A group of exponent 3 has class three at most, so for p = 3 it remains to 

consider only Fr,3. This has order 3(;)+(~) +r, with the (images of the) commu- 

tators above being a basis for F'/'~3(F), we have Z(F) = ~,3(F), and the triple 

commutators [xi, xj, xk], i < j < k are a basis for Z(F) ([Hm], Ch. 18). 

For p > 3, there is no general bound for the class, even if p is fixed, but 

there is one if p and r are given. However, the exact class, and order, of Fr,c 

are unknown in most cases [VL]. For class three the structure is described in 

[Me]. For completeness, we include the following result, dealing with groups of 

a small class, for which we have not found a convenient reference. We refer to 

([Hm], Ch. 11) for the Wit t  function and basic commutators, and to [K] for the 

correspondences between groups and Lie rings. The Witt  function is given by 

w (c) = ! c 
dlc 

PROPOSITION 1: Let c < d and c <_ p - 1 .  Then I%(F~,d) : %+l(Fr,d)[ = pW~(~). 

Proof: Let F be the (absolutely) free group of rank r. Then %(F)/%+t(F) is 
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a free abelian group of rank W~(c), therefore for any group G with r generators, 

the factor group 3'c(G)/3'c+l(G) can be generated by W~(c) elements. Thus, if 

exp(G) = p and d(G) <_ r, then that  factor group has order at most pW,(c). To 

complete the proof it suffices to find a group of exponent p and r generators for 

which the order of that  factor group is exactly pWr(r We start  with the group 

F/7p(F),  and let L be its associated Lie ring. Then L/pL  is a Lie algebra over 

GF(p) with factors in the lower central series of orders pW~(~), and the group 

associated to L/pL  by means of the Lazard correspondence is the one that  we 

are looking for. 

It follows that  F~,~ is the group associated to L/pL,  and that  the basic com- 

mutators of weight e form a basis for % ( F ) / % + l ( F ) .  For later reference, we 

record that  for c = 3 (and p > 3), these can be taken as the commutators 

[x~,xj,xk]; i > j < k. For c = 4 there are two types of basic commutators: 

one type consists of the commutators [[xi, xj], [xk, xt]], with i > j ,  k > l, and 

the pair (k, l) precedes (i, j )  lexicographically. The other type consists of the 

commutators [xi ,x j ,xk,xt] ,  with i > j < k < I. 

1. Class  t w o  

We start the discussion of classes and characters with the group F := Fr,2. 

Any element x outside F ~ = Z(F)  is one of a set of r free generators, say 

Xl = x, x 2 , . . . , x r .  Since the commutators [xl,xi] are independent, Cg(x) = 

(x, Z(F) ) ,  and thus x has p~-I conjugates, and there are p(~)-r+l(pr  _ 1) non- 

central classes, yielding a class number 

k ( F )  = p(~)+l + p(;)  _ p ( ; ) - ~ + l  = p ( ; ) -~+ l (p~  + p~- i  _ 1). 

The determination of the degrees and multiplicities of the irreducible characters 

require some preparations. 

LEMMA 2: Two epimorphisms r and r  group G onto a group H have the 

same kernel iff r = r for some a E Aut(H) .  

Proof." It is clear that  if r = Ca, then r and r have the same kernel. Con- 

versely, suppose that  the two homomorphisms have the same kernel, N say, then 

c~ is the composite of the two isomorphisms x r ~ x N  and x N  --* x r between 

H and G/N.  

LEMMA 3: Let F be a relatively free finite p-group of rank r, and let G be a 

group of order pn with d(G) = d G r. Then the number of homomorphisms of 
F onto G is pr(n-d)(pr _ 1) . . .  (pr _ pd-1) .  
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Proof: Given a homomorphism r of F into G, it is onto iff the induced homo- 

morphism of F into G/O(G) is onto. Since the inverse image of (I)(G) contains 

(I)(F), the above-induced homomorphism is onto iff the induced homomorphism 

from F/(I)(F) into G/O(G) is onto. Write Ak for the elementary abelian sub- 

group of rank k. Then F/O(F) and G/O(G) are isomorphic to Ar and Ad, 
respectively. The number of epimorphisms of Ar onto Ad is equal, by duality, 

to the number of monomorphisms of Ad into At, i.e. the number of independent 

d-tuples in At, which is (p~ - 1 ) . . .  (p~ - pd-1). Given an epimorphism r of F 

onto G/(~(G), let x r = yO(G), and let r be any homomorphism of F onto G 

inducing r Then x r can be any of the pn-d elements of y(~(G). To determine 

r we have to specify its value on any one of r free generators of F,  and thus the 

number of homomorphisms r inducing r is pr(n-d). 

LEMMA 4: Let p be odd, and let E be an extraspecial group of order p 2k+l. The 
order of Aut(E) is (p - 1)p 2k+k2 (p2k _ 1)(p2k-2 _ 1 ) . . .  (p2 _ 1), if  exp(E) = p, 
and ( p -  1)p2k+k2 (p 2k-2 -- 1) . . .  (p2 _ 1), if exp(E) = p2. 

Proof'. Commutation in E induces a non-degenerate alternate bilinear form 

from the vector space V := E/E '  to E' .  First assume that  exp(E) = p. Then 

the structure of E is determined by the above form. Let z generate E ' ,  and let 

xl ,  Yl, x2, �9 �9 �9 Yk be a set of generators which are a symplectic basis (modulo E') ,  

i.e. [x~, y~] = z, and all other commutators are 1. If (n,p) = 1, the map x~ --~ xV 

Yi --~ Yi, z --~ z n determines an automorphism of E,  and therefore the map from 

Aut(E) to Aut(E') is onto, and 

IAut(E)l = ( p -  1). (the order of the kernel of that  map). 

Each automorphism in that  kernel induces a symplectic linear transformation 

on E/E '  and, given such a transformation, we see, as in the proof of Lemma 2, 

that  this transformation is induced by p2k automorphisms, so 

iAut(E)] = (p_ 1)p2k I Sp(2k ' p)[ = ( p _  1)p2k+k2 (p2k _ 1)(p2k-2 _ 1 ) . . .  (p2 _ 1). 

We recall that  ISp(2k, p)[ is equal to the number of symplectic bases of V, and 

to determine that  number we note first that  xlE'  can be any one of the p2k _ 1 

non-zero vectors in V; then ylE' can be any one of p2k-1 vectors, and then 

we repeat the process in the (2k - 2)-dimensional orthogonal complement to 

(xlE', ylEI). 
Now suppose that  exp(E) = p2, let H be the maximal subgroup of E con- 

sisting of the elements of order p, and let W be the subspace H/E '  of V. The 
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orthogonal complement U of W in V has dimension 1, and since W is odd dimen- 

sional, it has a non-trivial radical, which must then be U. Writing U = Z / E  ~, 

that  means that  Z = Z(H),  and each automorphism of E keeps invariant both 

H and Z. We choose a symplectic basis as above, choosing Xl E Z. Then 

x2, . . . ,  Yk lie (modulo E') in the orthogonal complement of U, which is W, and 

Yl lies outside it. An automorphism a which is the identity on E ~ fixes yP, which 

implies that  it fixes the coset ylH. The commutator Ix1, Yl] is also fixed, which 

implies that  the coset XlE ~ is fixed, among the cosets of E ~ in Z. Thus when 

choosing now the symplectic basis which is the a-image of the given one, its first 

element is given, and for the others we have the same number of possibilities 

as before, therefore IAut(E)l differs from the order in the previous case by the 

factor 1/(p 2k - 1). 

Note: Naturally, this lemma is not new (see, e.g., [W]), but we gave the proof 

because a similar argument is needed below in the proof of Theorem 18. 

THEOREM 5: The character degrees of Fr,2 are 1 ,p , . . .  ,pit~2]. If  O < 2k < r, 

then the number of characters of degree pk o[ Fr,2 is 

pr+k2-3k(p r -- 1)(p ~-1 -- 1 ) " "  (p~-2k+l _ 1) 

(p2k _ 1)(p2k-2 _ 1) . . .  (p2 _ 1) 

Proof." Write F for F~,2. Since IF :  Z(F)[ = pr, the character degrees of F are 

bounded by p[r/2]. On the other hand, if 0 < 2k _< r, then F maps onto the 

extraspecial group of exponent p and order p2k+l, and the latter has irreducible 

characters of degree pk, hence so does F. Let X be an irreducible character of 

degree pk of F, and let N be its kernel. Then E := F / N  is a p-group having 

a faithful irreducible character, hence it has a cyclic centre. Since exp(E) -- p 

and c/(E) = 2, we obtain that  Z(E) = E '  has order p. Thus E is extraspecial, 

and since it has an irreducible character of degree pk, it has order p2k+l, and 

it is the unique extraspecial group of that  order and exponent p. Moreover, E 

has p - 1 irreducible characters of degree pk, and therefore the number of such 

characters of F is 

(p - 1) �9 (the number of normal subgroups N such that  F / N  TM E). 

To count the number of these normal subgroups, we note that  the number of 

epimorphisms of F onto E is given by Lemma 3, and by Lemma 2 the number 

of N's  is the number of those epimorphisms divided by [Aut(E)[. Putting all 

this together yields the formula of the theorem. 
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2. D e g r e e  p 

Given any finite group F which is relatively free of rank r in some variety V, 

the number of its irreducible characters of any degree k can be evaluated in a 

manner similar to the proof of Theorem 5. We need to have, first of all, a list 

of the groups in V which can be generated by r elements and have a faithful 

irreducible character of degree k. Moreover, for each such group we need to know 

the number of its faithful irreducible characters of degree k, the number of its 

generating r-tuples, and the order of its automorphism group. This method is 

easier to implement when F is a p-group, because of Lemma 3, and because 

a p-group G has a faithful irreducible character iff it has a cyclic centre. It  

remains to determine the number of automorphisms of G, and the number  of 

its relevant characters. We formalize the method in 

PROPOSITION 6: Let F be a relatively free finite group in some variety. Let 

E l , . . . ,  En be the set of groups with a faithful irreducible character of degree k 

which are epimorphic images of F,  let ti be the number of epimorphisms of F 

onto Ei, and let si be the number of faithful irreducible characters of degree k 

of Ei. Then the number of irreducible characters of degree k of F is 

t~si 

1 IAut(Z~)l" 

The next result is another illustration of the same method. 

THEOREM 7: Let p > 3 be a prime, and let F = Fr,c be a free group of rank 

r in the variety of groups of exponent p and nilpotency class c > 2. Then the 

number of irreducible characters of degree p of F is 

pr-2(pr _ 1)(p(r-1)(c-1)+l + p(r-1)(c-1) _ p~ _ 1) 

p2 _ 1 

provided c < p. For c >_ p, the number is the same as for c = p -  1. In 

particular, the lat ter  number is the number of irreducible characters of degree 

p of the biggest finite group of exponent p with r generators. 

We require here that  c > 2, because the case of class two is covered by 

Theorem 5, and the result there is different. Also, it will be seen in the proof 

tha t  a group of exponent 3 with a faithful character of degree 3 has class two 

(=  p - 1), so again the number of characters is given by Theorem 5. 

Proof: Let G be a finite group in the above variety which has a faithful ir- 

reducible character of degree p. Then G contains an abelian subgroup H of 
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index p ([BZ], Theorem 18.1). If x ~ H,  then commutat ion with x is an endo- 

morphism of H,  with kernel Cu(x)  = Z(G) and image [H,x] -= [H,G] = G', 
and so [H : G'[ = [Z(G)] = p .  I f y  c H - G ' ,  then the elementary abelian 

group H has a basis consisting of the elements y, [y, x], [y, x, x ] , . . . ,  [y, x , . . .  x], 

where if the last commutator  has weight s, so has s - 1 occurrences of x, then 

[G[ = pS+l, cl(G) = s, and G is a group of maximal  class. Note that  s deter- 

mines G uniquely. If s > p, then G contains the similar group with s -- p, and 

the latter is isomorphic to the wreath product  of two groups of order p, which 

has exponent p2. Thus the assumption exp(G) = p forces s < p. If  s -- 2, then 

G is extraspecial of order p 3  so its characters can be considered as characters 

of F/73(F) ,  and the number of such characters is given in Theorem 5. Assume 

now that  s >_ 3. Since G has p2 linear characters, it has pS-1 _ 1 irreducible 

characters of degree p. By the same token, G/Z(G)  has p~-2 _ 1 irreducible 

characters of that  degree, so G has p~-2(p_  1) faithful irreducible characters. 

The number of antomorphisms of G is the number of pairs (x, y) as above, 

i.e. p2~- l (p_  1)2. Since G has two generators, the number of epimorphisms of 

F onto G is p~(S-1)(p~ _ 1)(p~ _ p). As above, the number of normal subgroups 

N with factor groups isomorphic to G is obtained by dividing this number by 

[Aut(G)[, so in all we obtain (p(r-1)(s-1)-l(pr _ 1)(pr--i _ 1) ) / (p--  1) characters 

corresponding to a given value of s. Here s varies from 3 to c. Summing, and 

adding the number (p~-2(pr _ 1)(p~-i _ 1))/(p2 _ 1) corresponding to s = 2, 

yields our result. 

3. C l a s s  t h r e e  

Here we have to separate the prime 3 from the bigger ones, and we start  with 

the latter. To avoid confusion, we denote by L = L~ the free group of rank r in 

the variety of groups of exponent p and class three. For r = 2 we have ILl = ph, 

with ]i'[ = p3 and [Z(L)[ = h,a(L)l = p2. I t  follows that  cs(L) = (1,p2), with 

multiplicities (p2p3 _ 1), and cd(L) = (1,p), with the same multiplicities. 

THEOREM 8: Let Lr be as just  defined. Assume that p > 3 and r >_ 3. Then 
r~- i  

cs(nr) = (1,p~,p( 2 )-1) ,  and cd(Lr) = (1 ,p , . . .  ,p~). The classes occur with 
r 3 - - 4 r  

multiplicities ( p~ -~ ,  p 3 (p r(~ Z 1) _ 1), p r _ ~  +1 (pr _ 1)), and the c]ass number  

~(~2-a)- (~ pr+l 1). i s p  ~ [p~2j+ + p ~ _ p _  

~(~-~) 
Proof: W r i t e L  for Lr. We know that  [L : L'  I = p r ,  IL' : 73(L)1 = p  2 , 

r 3 - - r  

and 173(L)[ = P 3 Let (X l , . . . , x~ )  be a set of free generators of L. Then 

the elements [xi,xj,x~], i > j ,  are distinct basic commutators ,  so they are 
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independent elements of 73(L). It follows that  xr induces, by commutation, a 

1-1 map of L'/v3(L ) into 73(L), and in particular xr commutes with no element 

of L' - 3'3(L). But x~ does not commute with elements outside (L', xr) either 

(this holds already in L/"/3(L) "~ Fr,2). Thus Z(L) = 73(L), and CL(Xr) : 

(Z(L),  x~). Now if x is any element outside L', that  element lies in some set of r 

generators of L, and, because L is free, there is an automorphism of L mapping 

that  set of generators onto ( x l , . . .  ,xr) ,  and in particular mapping x to x~. It 

follows that  CL(X) = (Z(L),xl.  Moreover, taking an element y E L ' -  Z(L),  

this shows that  y does not commute with any element outside L I, and thus 

CL(y) = L'. It is now trivial to determine cs(L) and k(L). 

For the character degrees we note first that  since L ~ is abelian, a well known 

result implies that  they are bounded by IL : L/I = p~. Let first r = 3. Then 

ILI = p14, k(L) = ph(p4 + 2p3 _ p _ 1), and L has p3 linear characters and 

p(p3-1)(p3+p2+l) characters of degree p. The expressions for k(L) and ILl yield 

two equations for the numbers n2 and n3 of characters of degrees p2 and p3, and 

solving them we obtain n2 = p(p3 _ 1)(p5 +p4 _ 1) and n3 = p4(p_ 1)(p3 _ p _  1). 

In particular, both degrees occur, and our claim about cd(L~) holds for r = 3. 

We will next show that  if r > 3, then Lr has an irreducible character of degree 

pr. Since L~-I  is a homomorphic image of L~, this will prove our claim by 

induction. 

Let x ~ L'. Then C L , ( X )  : Z(L), so x fixes IL'l/p(~) elements of L', and 

the same number of linear characters of L'. Since L/L'  has (p~ - 1)/(p - 1) 

subgroups of order p, the total number of linear characters of L ~ that  are fixed 

by some subgroup outside L ~ is less than ILtl. Thus there are linear characters of 

L I whose inertial subgroup in L is L ~, and these characters induce an irreducible 

character of degree p~ of L. 

Note that  that  argument fails for r = 2. 

For p = 3 the centralizer CL(X) is determined in the proof of Theorem 10 

below, and it follows that  ICL,(X)l : IL'[/p(~1). The argument still applies, 

provided r > 5. We have to consider separately the groups of small rank. From 

now on let Lr denote the free group of rank r in the variety of groups exponent 

3 (we recall that  if r >_ 3, then L~ has class three). 

LEMMA 9: Write L := L3. Then cs(L) = (1, 3, 27), with multiplicities (3, 26, 78), 

and cd(L) = (1, 3, 27), with multiplicities (27, 78, 2). 
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Proof: The structure of L~ was described above, and in particular ILl = 37, 

IL~I = 34, IZ(L)] = 3, and L/Z(L) -~ F3,2. It follows that  each element of 

L ~ - Z(L) has three conjugates, and elements of L - L' have 27 conjugates. 

This yields the class sizes and shows that  k(L) = 107. Similarly, k(F3,2) = 105. 

Therefore L has two faithful irreducible characters, and the sum of squares of 

their degrees is 2.36 , so these degrees are equal to 27. The characters of smaller 

degrees must occur already as characters of L/Z(L), which has a centre of index 

27, so the degrees can be only 1 and 3, and since there are 27 linear characters, 

the result follows. 

THEOREM 10: Still assuming that  p = 3, write L := L~, and let r >__ 4. Then 

cs(L) = (1, 3 r-2,  3 r, 3(~)), these sizes occurring with multiplicities 

~ , [ 3 ( ~ ) , 3 ( ; ) - r + 2 ( 3 ~ - l ) ( 3 r - l - 1 )  3(;]_r/3(~).. ~ ' ' -  (3 ~ - 1 ) ( 3  ~ - 1 - 1 )  
8 ' 8 

3(;) (3 r - 1)~. 
/ 

-1), 

/ ~ "  1 f.-l~ 3r+1 3 ~ 4). I f  > 5, then cd(L) The class number is 3 ~ ) -  (3~ 2 j + + - r = 

(1 ,3 , . . . ,3~) .  

Proof'. Let x l , . . . , x r  be free generators of L. Then L'/v3(L ) is generated by 

the (images of the) commutators [xi, xj], i < j ,  and "y3(n) = Z(L) is generated 

by the triple commutators [xi,xj,xk], i < j < k. Moreover, the (~) simple 

commutators and the (3) triple commutators are bases for the corresponding 

groups. Any element outside L ~ belongs to a set of free generators, so we may 

as well assume that  it is xr. It then commutes with Z(L) and with elements 

of the form [x~, y], and does not commute with the commutators not involving 

it. Moreover, its commutators with these latter commutators yield independent 

generators of Z(L). Therefore 

Ci(xr) = (Z(L), xr,  [L, xr]) = (Z(L), x~, [xl, x~.],..., [Xr-1, Xr]), 

and x has 3(~) conjugates. 

Now consider a commutator  u = Ix, y]. If it is not central, then x and y 

are independent (mod L'), so we may as well assume that  u = [xl,x2]. Then 

[u, L] is the suhspace of Z(L) spanned by the commutators [xl, x2, xk], with 

2 < k, so u has 3 r-2 conjugates. An element of the form uz, with z E Z(L), 
has the same centralizer as u, so the same class size. If an element v of L' is 

not a commutator  (rood Z(L)) ,  then the previous paragraph implies that  v does 
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not commute with any element outside L/, and thus CL(V) = L t and v has 3 r 

conjugates. It remains to count the number of elements like u or v. Each pair of 

independent elements in L/L  ~ yields one commutator,  and another pair which 

spans the same subspace of L/L'  yields, modulo Z(L), the same commutator or 

its inverse, while pairs spanning different subspaces yield commutators that  are 

independent modulo Z(L). The number of 2-dimensional subspaces of L/L  ~ is 

(3 r - 1)(3 r-1 - 1)/16, yielding twice that  number of commutators, and we still 

have to multiply by [Z(L)] to get the number of elements lying in classes of size 

3 r-2.  A routine calculation ends the determination of cs(L) and k(L). 

For cd(L), note first that  since L5 maps onto L2 x L3, it has irreducible 

characters of all degrees up to 34 . Together with the observation, made following 

the proof of Theorem 8, that L~ has irreducible characters of degree p~, if r _> 5, 

this ends the proof. 

In the one remaining case, r = 4, an intriguing situation occurs. 

LEMMA 11: Let L := L4. Then cs(L) = (1,32,34,36), and these sizes occur 

with multiplicities (81, 2340, 468, 6480), and cd(L) = (1, 3, 32, 33), these degrees 

occurring with the same multiplicities as the class sizes. 

Proof: The claims about the conjugacy classes are just special cases of Theorem 

10, so consider the characters. The number of characters of degree 3 is given 

by Theorem 5, and it is 2340. Theorem 5 also shows that  L has at least 468 

irreducible characters of degree 9. L has irreducible characters of degree 27, 

because it maps onto L3, which has such characters. We count the number 

of characters obtained like that.  First, L3 has two irreducible characters of 

that  degree. The number of epimorphisms of L onto L3 is given by Lemma 

3, and dividing by IAut(L3)l yields the number of subgroups N ~ L such that  

L / N  ~ L3. Lemma 3 also yields IAut(L3)l, if we take r = d = 3. This yields 

6480 characters of degree 27. Since we have already found as many characters 

as conjugacy classes, we have found them all. 

COROLLARY 12: Among the groups of exponent 3 which have at most four 

generators, the extraspecial one of order 33 is the only one with a faithful irre- 

ducible character of degree 3, the extraspecial one of order 35 is the only one 

with a faithful irreducible character of degree 9, and L3, of order 37, is the only 

one with a faithful irreducible character of degree 27. None has an irreducible 

character of degree 81. 
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4. Class  fou r  

THEOREM 13: Write K = Kr for Fr,4. Then 

cs(K) = ( 1 , p r  p(r+2)(~-l)/2,p(~-l)(2r2+5~+6)/6), 

with corresponding multiplicities 

(pr2(r2-1)/4,p(ra-r2-4r)/4(p (r3-r)/3 - -  1),p(r-1)(Sr3+7r2-2r-12)/12(p r(r-1)/2 - -  1), 

p(r-1)(~3 +~2-4)/4(p ~ - 1)). 

Proof: By Proposition 1, the orders of the lower central factors of K are 
p~,p(r2-~)/2,p(~-~)/3,p (~4-~2)/4, and ]K I = p r(3~3+4~2+3~+2)/12. Let x @ K' .  

As in previous cases, we may assume that  x = x~ is one of r free generators 

of K.  Then the description of basic commutators shows that  if u r x is a 

basic commutator  of weight at most 3, then [u, x] is also a basic commutator. 

Therefore commutation by x induces a 1-1 transformation from ~(K)/7~+1 (K) 

into 7~+l(K)/%+2(K), provided i < 3. This shows that  Z(K)  = 7a(K),  and 

that  CK(X) = (Z(K),  x}, and therefore the elements outside K '  lie in classes of 
size p (r-1)(2r2+5r+6)/6, and there are p(r-1)(r3+r2-4)/4(p r - 1) of them. Next, 

[73(K), K'] = 1, and we have just seen that  the non-central elements of K' do 

not commute with any element outside K ' ,  therefore the non-central elements of 

73(K) have K ~ for their centralizer, and thus these elements lie in classes of size 

p~, and there are pr(r3-r--4)/4(p (rs-r)/3 -- 1) of them. Now note that  K' /73(K)  

is generated by the commutators [xi,xj], i > j ,  and that  the commutators of 

these elements are themselves basic commutators, so independent elements of 

74(K) = Z(K) ,  and therefore the (2) simple commutators generate a subgroup 

H isomorphic to F(~), 2. Let Z be a complement to H '  in 73(K). Then K '  = 

H • Z, which shows that  if y E K ' - " ) ' 3 ( K ) ,  then CK(y) = <y,73(/~)>, and this 

completes the determination of the class sizes and multiplicities. 

We can determine the character degrees, and in one case also the multiplici- 

ties, for the groups of small rank of class four. 

LEMMA 14: Let G := F2,4 be the free group of rank 2 in the variety of groups 

of exponent p and class four, p >_ 5. Then ]G[ = pS, cs(G) = (1,p2,p 4) and 

cd(G) -- (1, p, p2). The classes and characters occur with multiplicities (p3, p4 _ 

p, pa _ p2) and (p2p4 + p3 _ p2 _ 1,p4 _ p2 _ p + 1), respectively, and k(G) = 
p(2p3  + p2 _ p _ 1). 

Proof: The order, class sizes, and multiplicities were already determined in 

Theorem 13. By Proposition 1, the orders of the lower central factors are 
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p2,p, p2,p3. Since G has two generators, it is metabelian ([Hu], III.2.12.b), 

so G t is an abelian subgroup of index p2, and therefore the character degrees 

are 1,p, or p2. There are p2 linear characters, and Theorem 7 gives the number 

of the ones of degree p, so since we know the class number, the number of the 

characters of degree p2 is also determined. Alternatively, we can forego the 

use of Theorem 7, by noting that  the order and class number of G yield two 

equations for the numbers of characters of degrees p and p2, and solving them 

we obtain the above numbers. 

LEMMA 15: Let H : =  F3, 4 be the free group of rank 3 in the variety of groups 
of exponent p and class four, p > 5. Then [H[ = p32, cs(H) = (1,p3,p5,p13), 

and cd(H) = (1, p, p2, p3, p4). The classes occur with multiplicities (plS, p15 (pS _ 
1),p21(p 3 - 1),p16(p 3 - 1)), so k(H) = p15(p(p5 + 1)(p3 + p2 _ 1) - 1). 

Proof: Only the claim about cd(H) needs to be verified. First note that  

the proof of Theorem 13 shows that  Z(H') = 73(H). Thus IH' : Z(H')I = 
p3, implying that  cd(H I) = (1,p). Since each irreducible character of H is a 

component of some character that  is induced from an irreducible character of 

H I, the character degrees of H are at most pC. Write H = (x, y, z/. Then 

H'/Z(H')  is generated by the three commutators [y, x], [z, x], and [z, y], and 

the double commutators of these elements are distinct basic commutators. That  

means that  IH"l = p3, and the non-central conjugacy classes of H ~ are of size 

p2, and are contained in cosets uH". The proof of Theorem 13 shows that  if 

u ~ 74(H), then [u,x] ~ H";  actually, the subgroup Z there can be chosen to 

contain [H', x]. Therefore x does not keep invariant any class of H t outside 

74(H), and the number of x-invariant classes of H t is 174(H)1 = plS. 

Characters of degrees at most p2 occur already as characters of the group G 

of the previous lemma, which is a factor group of H. We will show that  H has 

irreducible characters of degrees p3 and p4 by showing that  H ~ has characters of 

both degrees i and p whose inertial subgroup in H is H ~. The induced characters 

will then be the desired irreducible characters of H. 

Write K = (H',x}, and let M be any subgroup of H such that  IM:H' I  = p. 

There are p2 + p +  1 such subgroups, and each of them has the form M = (H t, w). 

Here the element w belongs to some set of three free generators of H, so there 

is an automorphism sending K to M. Therefore the numbers of characters of 

each degree of H ~ invariant under M is the same as for K,  so in all there are 

at most plS(p2 + p + 1) irreducible characters of H ~ which are invariant under 

some subgroup containing H ~ properly. We saw in the proof of Theorem 13 
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that  H' -~ F3,2 • Z, where Z is elementary abelian, and checking the orders 

yields IZI --p23. Therefore H ~ has more than p23 irreducible characters of each 

degree, and some of these characters cannot be invariant under any subgroup 

like M, and so induce an irreducible character of H, as required. 

Almost identical considerations apply for the next two ranks, and we are 

content to just state the results, without detailed proofs. 

LEMMA 16: The group F4,4 has class sizes (1,p4,p9,p29), with corresponding 
multiplicities (p60, p56 (p20_ 1), pT1 (p6 _ 1), p57 (p4 _ 1)), and the character degrees 

are (1 ,p , . . .  ,p7). 

LEMMA 17: The group F5, 4 has class sizes (1,ph,p14,p54), with corresponding 
multiplicities (p150,plah(p40 _ 1),p176(plO _ 1),p146(p5 _ 1)). The character 

degrees are (1, p , . . . ,  plO). 

5. Class  two  a n d  e x p o n e n t  p2 

We now discuss the variety of groups of exponent p2, class two, and derived 

subgroup of exponent p. The last requirement is equivalent to the pth powers 

being central. The free group P of rank r in this variety, with generators 

X l , . . . ,  xr, say, has order p~(~+3)/2 with Z(P)  elementary abelian with a basis 

consisting of the elements x p~, and [xi, xj] (i < j). It is easy to see that  if 

x ~ Z(P) ,  then Cp(x) = (x ,Z(P)) ,  and thus cs(P) = (1,p~-l), the class 

multiplicities are (p(r2+~),p(~)+l (p~ _ 1)), and k(P) = p(~)+l (p~ + pr-1 _ 1). 

THEOREM 18: Let P := P~ be the free group of rank r in the variety of groups 
of class two, exponent p2, and derived group of exponent p. Then cd(P) = 

(i, p, . . . ,p[r/2]).  I f  2k <_ r, then the number of irreducible characters of degree 

pk of P is pr times the number given in Theorem 5 for Fr,2. 

Note that  that  result applies also for p --- 2, even though Theorem 5 is stated 

only for odd p, and even though there is some difference in the proof between 

p = 2 and the odd primes. 

Proof: The calculation of cd(P) is identical to the one in Theorem 5, so we 

have only to determine the multiplicities. For odd p this is a simple corollary of 

Theorem 5, because the groups Pr and Fr,2 are isoclinic, so the ratio between 

the numbers of characters of each degree of the two groups is equal to the 

ratio between their orders (see [Hp] for isoclinism, and [Ma], section 6, for 

proofs). That  argument does not apply for p = 2, so we give a proof that  
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applies for all primes. Let E be a group in the named variety with r generators 

and a faithful irreducible character of degree pk. Then Z(E) is cyclic so of 

order p or p2, and E' < Z(E). If IZ(E)I = p, then E is extraspecial of order 

p2k+l, and this time both extraspecial groups of that  order are factor groups 

of F.  Suppose tZ(E)I = p2, and let Z(E) = (z). The laws of P imply that  

exp(C2(E)) = exp(O(P)) = p, hence z • O(E),  and if M is a maximal subgroup 

not containing z, then E = MZ(E) ,  implying E '  = M'  = Z(E) A M = Z(M), 
a subgroup of order p, so that  M is extraspecial and E is a central product 

of M and Z(E). The character degrees of E are the same as of M, therefore 

IM I = p2k+l and IEI = p2k+2. It is easy to see that  both extraspecial groups of 

order p2k+l yield isomorphic central products with Z(E) (multiply generators of 

M by z, if necessary), so the structure of E is uniquely determined. Moreover, 

we must have 2k + 1 <_ r for E to be a factor group of P.  Thus we have three 

possibilities for E if 2k + 1 < r, and two possibilities if 2k = r. 

First, let p be odd, and let E be the extraspecial group of exponent p. Then 

the number of irreducible characters of P with kernel N such that PIN -~ E is 

calculated in the same way as in the proof of Theorem 5, and is equal to the 

number given in that  theorem (indeed, these characters can be considered as 

characters of P/PP TM Fr,2). Next, if E is extraspecial of exponent p2, the only 

difference is in the order of the automorphism group, which is given in Lemma 

4. Therefore the nmnber of relevant characters now is obtained by multiplying 

the number in the earlier case by p2k _ 1. There remains the case when E is not 

extraspecial. In this case E has p ( p -  1) faithful irreducible characters of degree 

pk. We choose the subgroup M above to consist of all elements of order p of E. 

Then M is characteristic, and an automorphism of E is determined by combining 

automorphisms of M and of Z(E) which agree on E' ,  implying IAut(E)l = 
plAut(M)l. Since E has now 2k + 1 generators, the number of epimorphisms 

of P onto E is (pr _ p2k). (the previous number), and the number of relevant 

characters is obtained by multiplying the previous number by p(pr _ p2k)/p. 
Collecting everything together, we see that the number of characters is the 

corresponding number for Fr,2, multiplied by 1 + (p2k _ 1) + (pr _ p2k) = pr. 

Now let p = 2. The only difference from the case of odd primes is in the cal- 

culation of IAut(E)l. If E is extraspecial, the map x -* x 2 induces a quadratic 

form on E/Z(E) ,  with values in Z(E), and this quadratic form determines the 

structure of E,  with the two non-degenerate quadratic forms corresponding 

to the two extraspecial groups of the right order. Thus Aut(E) maps onto 

the corresponding orthogonal group. An automorphism in the kernel of this 
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homomorphism is determined by its effect on the 2k generators, and each such 

generator, x say, can be mapped either to itself or to xz, where z is the unique 

central involution. Thus IAut(E)l = 22klO• , 2)1. When E is not extraspe- 

cial, we can consider it as the central product of a cyclic group Z = (z / of order 

four by an extraspecial group M corresponding to O +, i.e. a central product of 

dihedral groups. Aut(E) is transitive on the subgroups isomorphic to M which 

supplement Z, and the stabilizer of M in this action is of order 21Aut(M)l , as 

before. Fix a symplectic basis x~, y / fo r  M, where we may assume that  all these 

elements have order 2. A supplement N of Z is generated by elements of the 

form xiui, yivi, where ui and vi are either 1 or z. Different choices of ui, vi yield 

distinct supplements. The subgroup (xiui,yivil is quaternion if ui = vi = z, 

and dihedral otherwise, and N TM M if[ the number of quaternion subgroups is 

even. For each subset of even size 2s of the set of indices { 1 , . . . ,  k}, the number 

of N 's  with this subset as the set of changes from dihedral to quaternion factors 

is 3 k-2s. Therefore the number of supplements N isomorphic to M is 

~s (:S)3k-2s = ((3+ l)k + (3--1)k)/2 = 2k-l(2k + l), 

and 

IAut(E)l = 2k-l(2k + 1)21Aut(M) I = 2k(2 k + 1)22k]O+(2k, 2)1. 

Write n = IO+(2k,2)1. Then IO-(2k,2)[ = n(2 k + 1)/(2 k - 1), and therefore 

[Aut(E)[ is one of the three numbers 22kn, 22k(2k+l)n/(2k--1), and 23k(2k+l)n. 

The number of epimorphisms of P onto E is given by Lemma 3, and E has one 

or two irreducible character of degree 2 k, according to whether E is extraspecial 

or not. Note also that  if r = 2k, only the two extraspecial groups can occur as 

E. Now substitute the value 

n = 2 k 2 - k + l ( 2 k - - 1 ) ( 2 2 k - 2 - - 1 ) . . - ( 2 2  -- 1), 

and use Proposition 6 to obtain the claimed result. 
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